

Transportation Working Group 10 July 2012 Appalachian State University



**Greg Rucks** 

#### U.S. oil combustion: present and projected





### LOAD REDUCTION, PARTICULARLY VIA WEIGHT REDUCTION, IS THE HIGHEST-LEVERAGE MEANS OF IMPROVING VEHICLE EFFICIENCY

Energy flow through a typical internal-combustion engine drivetrain







#### **INCREMENTAL IMPROVEMENTS IMPART NEAR-TERM EFFICIENCY OPPORTUNITY**



Vehicle Improvements



## EFFICIENT HEATING, VENTILATION, AND AIR CONDITIONING (HVAC) CAN SIGNIFICANTLY IMPROVE VEHICLE FUEL ECONOMY

5.5% of all oil currently burned in passenger vehicles is for air conditioning



APPLYING THE CHIMNEY EFFECT TO PARKED CARS ALLOWS: -AIR CONDITIONING SYSTEM DOWNSIZING -COOLER INTERIOR TEMPERATURES







HIGH-EFFICIENCY THERMAL COMFORT ALLOWS: -IMPROVED MPG

- -INCREASED RANGE
- -IMPROVED DRIVING EXPERIENCE
- -POTENTIAL FOR CUSTOMIZATION

# EXTENSIVE USE OF ADVANCED MATERIALS, INCLUDING CARBON FIBER COMPOSITE, LEADS TO "REVOLUTIONARY+" AUTOS W +200 MPGE







# ADVANCED VEHICLES INITIALLY COST MORE, BUT THE LEARNING CURVE IS STEEP, AND POLICY CAN HELP MANUFACTURERS DESCEND IT FASTER.



"Ben Franklin said there are two certainties in life: death and taxes. To that, I would add the price volatility of natural gas." (Jim Rogers, CEO, Duke Energy)



#### **HISTORICAL NATURAL GAS PRICE PROJECTIONS**

Year

### **EFFICIENT & ALTERNATIVE FUELED VEHICLE COST COMPARISON**

| Technology                            | Fuel Economy (mpg) | Incremental Cost | Infrastructure Cost | Payback Period |
|---------------------------------------|--------------------|------------------|---------------------|----------------|
| Base ICE                              | 25                 |                  |                     |                |
| High Efficiency ICE                   | 36                 | -\$4,432         | \$0                 |                |
| Hybrid Electric Vehicle <sup>I</sup>  | 45                 | \$1,400          | \$0                 | 2 years        |
| Battery Electric Vehicle <sup>2</sup> | 100                | \$9,800          | \$.05/gge           | 9 years        |
| Light Duty NGV <sup>3</sup>           | 35                 | \$2,850          | \$.06/gge           | 6 years        |
| Transit Bus NGV <sup>4</sup>          | 4                  | \$21,700-53,700  | \$.28/gge           | 3-6 years      |
| Refuse Truck NGV <sup>5</sup>         | 5                  | \$6600-\$31,600  | \$.22/gge           | 3-5 years      |

I I5k miles driven per year, Prius C Hybrid (\$23,537) vs. Camry (\$22,097)

2 Nissan Versa (\$18,640) vs. Leaf (\$28,421 after \$7500 tax credit)

3 Honda Civic (\$19,455) vs Honda Civic CNG (\$22,305 after \$4000 tax credit)

4 35k miles driven per year, range is with/without fed tax credits

5 25k miles driven per year, range is with/without fed tax credits

Other Considerations:

-Battery learning curve steeper than natural gas learning curve

-Long term applicability of natural gas infrastructure - EVs can add storage capacity to a distributed renewable grid

-GHG intensity: NG emits 6-11% fewer greenhouse gasses (EPA) than gasoline but controversial study (Princeton) showed well to wheels emissions canceled GHG benefit of natural gas vs. coal

-EV efficiency 80%, internal combustion engines 25-30%, NG to electricity via gas turbine (CCGT) 50-60%

-Natural gas very compelling for medium-sized truck fleets (the larger the fleet, the better) and transit buses (assuming high VMT)

Sources: NESCAUM VISION NE Transportation Fleet Model; EIA Energy Outlook 2011; New York Times, NESCAUM Economic Analysis of a Program to Propote Clean Transportation Fuels in the NE/Mid-Atlantic Region; NREL 2010, "Business Case for Compressed Natural Gas in Municipal Fleets;", MJ Bradley & Assoc 2012, "Perspectives on Electric Vehicles and Charging Infrastructure

#### THREE BIOFUEL CONVERSION PATHWAYS WITH NON-CROPLAND BIOFEEDSTOCKS LEAD TO COST-COMPETITIVE BIOFUELS



# Using vehicles more efficiently leads to a reduction in vehicle miles traveled (VMT) of nearly 50%





### VMT REDUCTION APPROACH SUMMARY

| VMT Strategy          | VMT Tactic                                                    | Timeframe   | Example(s)                                                                                                                                                                            |  |
|-----------------------|---------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                       | Vehicle Miles Traveled fee of 1-2¢/mi                         | near        | California: 3.9-4.3% projected VMT reduction                                                                                                                                          |  |
| Innovative Pricing    | Pay as you drive insurance                                    | near        | Massachusetts: 3-7% VMT reduction based on insurance claims                                                                                                                           |  |
|                       | Congestion Pricing                                            | near to mid | London: 22% measured reduction in congestion, 37% increase in public transit ridership                                                                                                |  |
|                       | Parking fees / demand-responsive<br>parking                   | near to mid | SFPark, ParkMe, StreetLine                                                                                                                                                            |  |
|                       | Work from home, work hubs, condensed work weeks, carpooling   | near        | eWorkplace (productivity gains)<br>Stamford, CT: 0.7-1.8% VMT reduction by 2030                                                                                                       |  |
|                       | Rideshare / Carshare                                          | near        | ZipCar, ZimRide                                                                                                                                                                       |  |
|                       | Bikeshare                                                     | near        | DC Capitol Bikeshare                                                                                                                                                                  |  |
| Alternative Commuting | HOV lanes                                                     | near to mid | DC                                                                                                                                                                                    |  |
|                       | New public transit                                            | far         | Sacramento: Projected 6-10% VMT reduction by 2035                                                                                                                                     |  |
|                       | Bike lanes, sidewalks                                         | near to mid | Stamford, CT: 0.4% VMT reduction by 2030                                                                                                                                              |  |
| Smart Growth          | Transit-oriented development,Work/<br>live/shop neighborhoods | far         | Portland: 8-10% due to urban growth boundary and commuting<br>improvements<br>Atlantic Station, GA: 59% residential and 36% employee VMT<br>reduction from "live-work-play" community |  |
|                       | Data integration and system interoperability                  | near to mid | Embark, BART                                                                                                                                                                          |  |
| System Efficiency     | Intelligent Transportation Systems<br>(ITS)                   | mid to far  | ITS America, Multi state coalition                                                                                                                                                    |  |
|                       | Enhanced Mobility on Demand                                   | mid to far  |                                                                                                                                                                                       |  |

### VMT REDUCTION APPROACHES & THE POTENTIAL OF SOFTWARE TO MAKE AN IMMEDIATE IMPACT: BIKESHARING

### capital bikeshare





### Spotcycle App



### VMT REDUCTION APPROACHES: TELECOMMUTING

## Software/Metrics:

### eWorkPlace





Policy:

### VMT REDUCTION APPROACHES & THE POTENTIAL OF SOFTWARE TO MAKE AN IMMEDIATE IMPACT: PARKING





